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Short guide for electromagnetic conductivity 

mapping and tomography 

 
This guide brings a brief description of geophysical and 

technical features of the electromagnetic method 

accompanied with illustrative examples of multilayer 

mapping and profiling. However, this new edition is 

completed by rather complex physical theory useful both for 

academic sphere and for skilled users. You can find this 

chapter at the end of the brochure. 

 

 

Chapter 1 

General features, depth range and resolution 
 

The most important advantage of electromagnetic 

conductivity meters is fast contactless mapping of apparent 

conductivity and inphase with possibility of EM inversion 

(section imaging) if several layers are measured together.  

While talking about true conductivity meters it is necessary to 

take care especially of their three crucial properties: 

- short & long term stability of readings (negligible 

temperature drift, no need of frequent recalibration) 

- correct absolute calibration of apparent conductivity 

- defined depth range. 

Stability of reading is determined by design quality of 

electronics and mechanical parts of the device. Correct 

calibration depends on the quality (structure homogeneity) 

and proper conductivity level of calibrating places. Depth 

range is determined by the distance of magnetic dipoles 

(distance between coil centers of transmitter and receiver). 

 

 

 



 

 

 

Keeping the above mentioned instrument features we can 

obtain quick and useful results that match very well with DC 

resistivity methods (maps, slices and sections from 2D and 

3D tomography). EM measurement could be easily 

performed on dry or frozen ground as the method is 

contactless. 

 

The pictures below show normalized sensitivity function for 

all CMD instruments. (The depth means depth under the 

probe.) For instance CMD 4 in high depth range is the most 

sensitive for object 1.3 m under the probe. Effective depth 

(where 75% of cumulative sensitivity is achieved) is 6 m. 

Formulae for calculation of normalized sensitivity are 

introduced in the theoretical chapter at the end of the 

brochure. 

 

Sensitivity functions for high and low depth range: 
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There are two basic ways how to provide requested measuring 

depth range – by the choice of dipole distance (distances) or by 

the change of the orientation of dipoles (from vertical to 

horizontal direction). The first one is more convenient 

especially if EM inversion is calculated from multilayered 

measurement. The second one (leading approximately to half 

depth range) is auxiliary but useful for fast judgment of 

structure when only one single depth probe is available. 

 

Resolution and depth range are closely related. Increasing 

depth range decreases resolution and vice versa. Resolution 

can be significantly improved by EM inversion which 

improves depth and size imaging of objects in slices and 

sections as well. 

 

 

Inphase quantity 
 

The second parameter which is measured simultaneously with 

apparent conductivity is inphase. It is defined as relative 

quantity in ppt (part per thousand) of primary magnetic field 

and is closely related to magnetic susceptibility of measured 

material. The inphase can especially serve for indication of 

artificial metal objects like cables, pipes, reinforced concrete, 

tanks etc. Thus the inphase map can help to distinguish 

artificial structures from natural geology seen in apparent 

conductivity map. 

  



 

 

 

 

EM inversion 
 

EM inversion serves for data processing at multilayer 

measurement. Although the EM inversion never gives so 

detailed and accurate results as DC resistivity processing, its 

useful contribution is obvious for many cases of investigation. 

Together with apparent conductivity and resistivity maps from 

individual depths, EM inversion brings quick and complex 

view on the studied structure. 

 

There are two typical ways of EM inversion – with sudden or 

fluent change of conductivity/resistivity in calculated inverse 

model. The up-to-date choice of commercially available EM 

inversion software for shallow depth range conductivity meters 

is really not wide.  

For CMD data processing we offer three ways of inversion: 

- CMD-Explorer system (for 2 layered model – structure 

with sudden conductivity/resistivity change). 

1D inversion is made either directly in field during 

measurement (control unit shows upper layer 

conductivity, bottom layer conductivity and depth of their 

border) or as post processing by CMD PC software with 

output of section for Surfer. 

- IX1D by Interpex (especially suitable for structures with 

sudden conductivity change). 

1D inversion in conductivity section can be processed 

either automatically or manually (with starting model and 

individual spot processing). 

- Res2Dinv and Res3Dinv by Geotomo (convenient for 

structures with fluent resistivity change). 

2D and 3D inversions with output of resistivity sections 

and slices use transformed EM data (features similar to 

DC pole-pole array) exported from CMD PC software.  

  



 

 

 

 

 

For the possibility of effective EM inversion a measurement 

with CMD-Explorer,  CMD-Mini Explorer or CMD-Mini 

Explorer 6L is recommended. Inversion from a combination 

of both vertical and horizontal (Hi/Lo) measurement is not 

considered as a general improvement of model section. 

 

The choice of the data processing method is a crucial point of 

good geophysical interpretation. There is no major general 

purpose processing method for EM data. For proper decision 

we recommend to take in consideration the preliminary idea 

of investigated structure and the goal of survey with the 

respect to your familiarity with interpretation software. 

For basic tasks primary apparent conductivity/resistivity 

maps are quite sufficient. For advanced user there is 

a number of ways of data processing (including EM 

inversion) shown in Chapter 2. 

 

Following Comparisons of Model Resistivity Sections by 

Res2Dinv show 2D inversion of DC and EM data from the 

same lines. First two pictures confirm good accordance of the 

border shape and resistivity values. The CMD-Explorer 

measurement with low depth range matches better with real 

border depth and thus gives more realistic result than the 

measurement with high depth range. On the other side the 

CMD-MiniExplorer on the same structure (next picture) 

gives better results with high depth range than with low depth 

range due to the same reason. The last Comparison obtained 

from CMD-MiniExplorer 6L shows both good border 

evaluation with high depth range and better detection of 

surface anomalies with low depth range.   



 



 



 



 

 

 

 

Multidepth measurement - wish and reality 

regarding use of different frequencies 
 

It would be really great to obtain correct conductivity maps from 

many different depths using broad band antennas with stable 

transmitter to receiver distance and various frequencies of EM 

field. Unfortunately, physics does not support such a possibility: 

For correct conductivity measurement we have to remain at low 

induction numbers. Thus the effective depth range is determined 

by dipole center distance. The choice of frequency (in a limited 

range) can serve only for tuning of the shape of the calibration 

curve and for cancellation of external  EM interferences. 

 

We will find two basic effects of multifrequency measurement 

with constant dipole center distance: 

- The frequency is changing from hundreds of Hz to 

100 kHz approximately so the device remains usually at 

low induction number. We will find the depth range 

determined by the distance of magnetic dipoles and 

conductivity maps mostly show no frequency depending 

differences. Influence of broadband antennas decrease 

sensitivity and stability of measuring system. 

- The frequency change is bigger (e.g. to 1 MHz). The 

measuring device is usually crossing the transient zone of 

induction numbers with ambiguous response and declining 

calibration curve with the depth range influenced by 

conductivity and by frequency at the same time. Measured 

results cannot be correctly calibrated in conductivity and 

consequently used for EM inversion. 

Following pictures from the same testing area illustrate how the 

resistivity map changes if we change the frequency only and if we 

change the dipole distance. The accompanying DC resistivity 

section shows detailed structure on the same place. 

  



 





 
 



 

 

 

 

Choice of the probe  

 

Eight standard probes are offered covering all typical tasks of 

shallow EM survey, 

 

CMD-Explorer with simultaneous 6.7 m, 4.2 m, 2.2 m full 

depth ranges is designed for investigation of layered structures 

in the frame of geological, geotechnical, prospecting and other 

tasks. Rich current graphical output (with in-situ inversion) 

and support of consequent data processing (mapping, sections 

and inversion) make Explorer ideal for fast and complex EM 

survey. 

 

CMD-Mini Explorer with simultaneous 0.5 m, 1.0 m, 1.8 m 

full depth ranges is designed for investigation of very shallow 

layered structures in the frame of agriculture, forestry, 

archaeology, road inspection and other tasks. Rich current 

graphical output (with in-situ inversion) and support of 

consequent data processing (mapping, sections and inversion) 

make Mini Explorer ideal for fast and complex EM survey. 

 

CMD-DUO two men operated with variable 15/30/60 m full 

depth range (dipole distance of 10/20/40 m) is useful for 

distinguishing of deeper situated geological structures as 

bedrock, weathered zones, cavities and fissures. 

 

CMD-4/6 with variable 6/9 m full depth range allows 

measurement with the same or extended depth range as classic 

CMD-4 in the frame of its typical applications. 

 

CMD-4 with 6 m full depth range and typical use in geological 

and environmental survey can be used for many connected 

tasks like mapping of raw material deposits, watered zones,        

. 



 

 

 

 

 

localization of waste dumps, buried tanks and other hidden 

objects. 

 

CMD-2 with 3 m full depth range and typical use in 

engineering survey can serve for cable and pipe localization as 

well as for general assessment of construction site (e.g. 

detailed investigation of basement positions – clayey, sandy, 

rocky parts). 

 

CMD-1 with 1.5 m full depth range is typically used in 

archaeology and agriculture. 

This probe carried mostly near the ground surface allows 

detailed distinguishing of buried objects (vertically orientated 

zones, e.g. basement of walls, rock outcrops) and conductivity 

assessment of upper thin layers. 

 

CMD-Tiny with 0.7 m full depth range allows the highest 

resolution of shallow situated objects in the frame of 

monitoring of artificial structures (roads, buildings, historical 

sites) as well as soil quality evaluation in agriculture and 

forestry. 

 

 

Special probes with up to 10 m dipole distance and with up to 

6 simultaneous receivers are available on request. 

 

CMD-Mini Explorer 6L  with simultaneous 0.3 m, 0.5 m, 

0.8 m, 1.1 m, 1.6 m, 2.3 m full depth ranges is designed for 

high resolution investigation of  shallow layered structures in 

the frame of agriculture, forestry, archaeology, criminology, 

road inspection and civil engineering. 

 

  



 

 

 

 

Chapter 2 

Examples of multidepth investigation 
 

This chapter shows typical examples from measurement with 

CMD-Explorer and CMD-MiniExplorer (including 6L). CMD 

software for PC provides data transformation and export for 

commonly spread geophysical processing programs for 

imaging and inversion (Surfer, IX1D, Res2Dinv and 

Res3Dinv). 

 

Each following part bringing results from a chosen locality 

begins with reference DC resistivity section measured with 

ARES instrument that allows a comparison with individual 

ways of imaging and inversion of EM measurement.  

  



 

 

 

 

GF Testing Site 

 

The structure is typical with pinching of sandy layer above 

clayey background. 

 

All available kinds of imaging and inversion are explained 

here and shown consequently: 

- Apparent Resistivity Maps show basic outputs from 

all three depth graded EM systems of CMD-Explorer. 

- Resistivity Slices from EM Inversion by CMD-

Explorer show depth graded resistivity maps based on 

1D inversion of measured data. 

- 2D EM Inversion by CMD-Explorer shows measured 

apparent resistivity section and inverse model 

resistivity section based on 1D inversion. 

- EM Inversion by IX1D shows conductivity section by 

Interpex software. 

- 2D Imaging and Inversion by Res2Dinv shows 

measured apparent resistivity section and inverse 

model resistivity section by Geotomo software. 

- 3D Imaging and Inversion by Res3Dinv shows depth 

graded resistivity slices and resistivity sections 

along/across measured lines (YZ/XY directions) by 

Geotomo software. 

 

  



 



 



 



 



 



 



 



 



 



 
 

Pinching of Loess Layer 

 

The structure is typical with pinching of loess layer above 

rocky background. 

 

Chosen kinds of imaging and inversion related to geological 

structures are shown: 

- Apparent Resistivity Maps 

- Apparent Resistivity Section 

- Conductivity Section from EM inversion by IX1D 

- Resistivity Section from 2D inversion by Res2Dinv 

 

  







 



 



 
 



 

 

 

Farming and Woodland Area 

 

Measured area across agricultural land and wood allows 

studying both geological background (CMD-Explorer) and 

detailed upper very shallow soil structures (CMD-

MiniExplorer). 

 

Chosen useful kinds of imaging and inversion are shown. 

 

Geological structures: 

- Apparent Resistivity Maps (confirm well sharp slope of 

contact with diabase background and sandy loam layer 

in upper part) 

- Resistivity Slices and YZ Sections from 3D Imaging 

and Inversion by Res3Dinv 

 

 Shallow soil structures: 

- Apparent Resistivity Maps (with top soil in upper part) 

- Apparent Resistivity Section 

- Conductivity Section from EM inversion by IX1D 

- Resistivity Section with 2D imaging and inversion by 

Res2Dinv 

- Resistivity Slices from 3D inversion by Res3Dinv 

  





 



  







 



  



 



  



 

 

 

 

Metal Pipeline Detection 

 

Measurement was performed above metal pipeline. The goal of 

the measurement was to determine position and depth of the 

pipe.  

 

The most effective ways of imaging are shown: 

- Inphase maps from all three EM systems of CMD-

MiniExplorer (with the biggest contrast at 1 m depth) 

- Resistivity Section with 2D imaging and inversion by 

Res2Dinv (confirms 1 m depth of the pipe) 



 



 
 



 

 

 

 

 

Survey of the Settlement of the Bell Beaker Culture 

 

Measurement was performed at the locality with surface 

archaeological findings to determine the area and depth of 

cultural layers.  

 

Following pictures show: 

- Six depth graded apparent resistivity maps made by 

CMD-MiniExplorer 6L 

- Central inverse model resistivity section (measured with 

CMD-MiniExplorer 6L along line 20 with inversion by 

Res2Dinv) accompanied with reference inverse model 

resistivity section measured with ARES II with inversion 

by Res2Dinv (confirms the bottom line of cultural layers 

at the depth of about -1 m). 

 

 

 

 



 



 
 



 

 

  



 

 

 

 

 

Chapter 3 

Examples of typical applications 
 

Engineering survey, road and railway building  

- judgment of bedrock 

- detection of cellars, cables, pipes 

- assessment of mechanical properties of rocks 

 

Dams and dikes (flood protection) 

- localization of watered zones and landslides 

- mapping of impacts 

- beaver holes detection 

 

Water management 

- water source survey and protection 

- monitoring of waste water leakage 

 

Geological mapping 

- raw material prospecting 

- geological survey 

- cavities detection 

 

Agriculture 

- soil quality monitoring 

- fertilizer and watering management 

 

Archaeology 

- detection of remains of walls, cellars, vaults 

- detailed survey of historical sites (graves, settlements) 

- localization of underground corridors  

 

  



 

 

 

 

Environmental 

- mapping of pollution plumes 

- survey of illegal waste dumps 

- monitoring of leakages from agricultural and industrial 

plants 

 

Military and police 

- pioneer work 

- UXO survey 

- detection of graves and hidden objects 

 

 

Comment: 

Instruments CM-031, CM-032 and CM-138 are older versions 

of up-to-date CMD-4, CMD-2 and CMD-1 probes. 

 
 































 
 



 



Physical Theory of Electromagnetic Conductivity Measurement
Low Induction Number Approximation

by Hana R̊užičková

This chapter brings a complex mathematical derivation based on Maxwell
equations of electromagnetic field. Our intention is to describe both all im-
portant mathematical crossings together with physical simplifications and
their final impacts on measuring features of electromagnetic conductivity
meters. Such complex analysis is not usual for electromagnetic geophysical
literature (e.g. G. V. Keller, S. Mareš). The analysis is completed with
derivation of formulae for calculation of depth-depending normalized sen-
sitivity of antennas.
The coplanar (slingram) configuration of transmitter and receiver coils is
analysed in vertical and horizontal positions. Individual mathematical and
physical steps are commented as they follow. Some used procedures come
from the article by S. H. Ward and G. W. Hohmann (1988).

We assume all material constants are only frequency-dependent; we work
with non-magnetic environment.

~D = ε ~E, ~j = σ ~E, ~B = µ ~H, µ = µ0,

where ~D is electric displacement field, ~E is electric field intensity, ~B is
magnetic field, ~H is magnetic field, ~j is current density, ε is permittivity,
σ is conductivity and µ is permeability with µ0 for vacuum. We use har-
monic current, i.e. I ∼ eiωt, where I is current, ω is angular frequency and

t is time. Therefore both ~E and ~H ∼ eiωt, ∂ ~H
∂t = iω ~H and ∂ ~E

∂t = iω ~E.
Maxwell equations in homogeneous medium:

∇× ~H = ~j +
∂ ~D

∂t
= σ ~E + ε

∂ ~E

∂t
= (σ + iωε) ~E (1)

∇× ~E = −∂
~B

∂t
= −µ0

∂ ~H

∂t
= −iωµ0

~H

∇ ~D = ε∇ ~E = 0

∇ ~B = µ0∇ ~H = 0

For space with field sources we need to have inhomogeneous equations.
We assume only magnetic inhomogeneities.

∇× ~E + iωµ0
~H = − ~Jmag (2)



For further mathematical purposes we define ~F :

~E = −∇× ~F

From (1) we get ~H = − (σ + iωε) ~F −∇U , where U is an arbitrary scalar

with useful calibration ∇~F = −iωµ0U . Inserting all this into (2), we
obtain

∇2 ~F + k20
~F = − ~Jmag,

where k2n = µ0εnω
2 − iωσnµ0 and n = 0 denotes air. We work with low

frequencies, so µ0εnω
2 � ωσnµ0 and kn =

√
−iωµ0σn. As we can assume

all our sources to be magnetic dipoles (current loops from far enough),

it is sufficient for ~F to have only one component in the dipole direction.
Therefore it is enough now to solve only one scalar equation.

Vertical magnetic dipole

We assume a vertical magnetic dipole in the z-direction above earth with
z = 0 boundary, m is magnetic moment of the dipole.

∇2F + k20F = −iωµ0mδ(x)δ(y)δ(z)

For easier mathematical processing we introduce 3D Fourier transform and
apply it to the equation above:

F 3DF(kx, ky, kz) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F (x, y, z)e−i(kxx+kyy+kzz) dxdydz

(−k2x − k2y − k2z + k20)F 3DF = (−iωµ0mδ(x)δ(y)δ(z))3DF

F 3DF =
iωµ0m

k2x + k2y + k2z − k20
We integrate over kz (earth is perpendicular to z):

F 2DF(kx, ky, z) =
iωµ0m

2π

∫ ∞
−∞

eikzz

k2x + k2y + k2z − k20
dkz =

iωµ0me−u0|z|

2u0
,

where un =
√
k2x + k2y − k2n. Knowing the z-dependence we assume our

solution to be

F 2DF(kx, ky, z) =
iωµ0m

2u0

(
e−u0z + reu0z

)
,



where the first term contains the amplitude of the incident electromagnetic
wave going from the source to the boundary and the second term is the
refracted wave with r being the amplitude reflection coefficient of normal
incidence (from Fresnel conditions) r = u0−u1

u0+u1
. Indices 0 refer to the air,

1s are for earth. We perform inverse 2D Fourier transform (only two
integrals remain):

F (x, y, z) =
iωµ0m

8π2

∫ ∞
−∞

∫ ∞
−∞

(
e−u0z + reu0z

) 1

u0
ei(kxx+kyy) dkxdky

For rotationally symmetric functions we can convert to a Hankel transform:

F (ρ, z) =
iωµ0m

4π

∫ ∞
0

(
e−u0z + reu0z

) λ
u0

J0(λρ) dλ, (3)

where λ2 = k2x + k2y, ρ2 = x2 + y2 and J0(x) is a Bessel function. Electric
field has only angular component Eϕ = −yρEx + x

ρEy. Using identities

∂J0(λρ)

∂x
= −λx

ρ
J1(λρ), Ex = −∂F

∂y
, Ey =

∂F

∂x

Eϕ = − iωµ0m

4π

∫ ∞
0

(
e−u0z + reu0z

) λ2
u0

J1(λρ) dλ

We assume dipoles to be in non-conductive air: k0 = 0, u0 = λ. Then
k1 = k =

√
−iωµ0σ and u1 = u. We are looking for solution in z = 0

(both transmitter and receiver are on the ground):

Eϕ = − iωµ0m

2π

∫ ∞
0

λ2

λ+ u
J1(λρ) dλ =

iωµ0m

2π

∂

∂ρ

∫ ∞
0

λ

λ+ u
J0(λρ) dλ

=
iωµ0m

2πk2
∂

∂ρ

[∫ ∞
0

λ2J0(λρ) dλ−
∫ ∞
0

λuJ0(λρ) dλ

]
Identities: ∫ ∞

0

e−λzJ0(λρ) dλ =
1√

ρ2 + z2
(4)

∫ ∞
0

λ

u
e−uzJ0(λρ) dλ =

e−ik
√
ρ2+z2√

ρ2 + z2

Eϕ = − m

2πσ

∂

∂ρ

[
∂2

∂z2
1√

ρ2 + z2
− ∂2

∂z2
e−ik
√
ρ2+z2√

ρ2 + z2

]
z=0

= − m

2πσρ4
[
3−

(
3 + 3ikρ− k2ρ2

)
e−ikρ

]



Maxwell equation in cylindrical coordinates:

Hz = − 1

iωµ0

1

ρ

∂

∂ρ
(ρEϕ)

Secondary magnetic field in z-direction:

Hs
z =

m

2πk2ρ5
[
9−

(
9 + 9ikρ− 4k2ρ2 − ik3ρ3

)
e−ikρ

]
,

with ρ being the distance between the coil centers. Primary field (magnetic
dipole in free space):

~H(~r) =
1

4πr3
[3(~m~r)~r − ~m]

Hp
z = − m

4πρ3

For γ = ik we get frequently published McNeill’s equation

Hs

Hp
=

2

γ2ρ2
[
9−

(
9 + 9γρ+ 4γ2ρ2 + γ3ρ3

)
e−γρ

]
(5)

We introduce the induction number: B = γρ√
2i

.

Hs

Hp
= − 9i

B2

[
1−

(
1 +B + iB +

8

9
iB2 − 2

9
B3 +

2

9
iB3

)
e−Be−iB

]
We are interested in the quadrature, i.e. imaginary part:(
Hs

Hp

)
q

=
−9i

B2

[
1−
(
B+

8

9
B2+

2

9
B3

)
e−B sinB −

(
1+B− 2

9
B3

)
e−B cosB

]
Taylor expansion for small B:(

Hs

Hp

)
q

= i

[
B2

2
− 8B3

15
+

16B5

105
− 5B6

72
+O(B7)

]
(6)

For very small B: (
Hs

Hp

)V

q

≈ iB2

2
=
γ2ρ2

4
=

iσµ0ωρ
2

4



This formula is typical for the linear part of the calibration curve of elec-
tromagnetic conductivity meters. With increasing induction number the
second term of the expansion (6) gives a distinct negative contribution,
which results in the decreasing part of the calibration curve and ambigu-
ous results of measurements.
Now we can express the apparent conductivity σV:

σV =
4

iµ0ωρ2

(
Hs

Hp

)V

q

(7)

When we look at the real part of (5), we get

<
(
Hs

Hp

)
=

9

B2

[(
1 +B − 2

9
B3

)
e−B sinB −

(
B +

8

9
B2 +

2

9
B3

)
e−B cosB

]
Taylor expansion for small B:

<
(
Hs

Hp

)
= 1 +

8B3

15
− B4

2
+

16B5

105
+O(B6)

For very small B:

<
(
Hs

Hp

)V

= 1 +
4
√

2

15
(ωµ0σ)

3
2 ρ3

From this formula we can see that after subtraction of the primary field
(number one – the first term) the most significant term contains a contri-
bution of ground conductivity. This is undesirable effect for using in-phase
to measure magnetic susceptibility.

Vertical dipole – depth-depending sensitivity

In the last chapter we considered earth to be a homogeneous medium with
measurable apparent conductivity. Now we assume layered earth. We will
continue from equation (3), but this time instead of inserting reflection
coefficient of homogeneous halfspace in it, we will derive an expression for
cumulative reflection from an infinite number of layers according to Optics
of Thin Films by Z. Knittl.
From Fresnel conditions at normal incidence we get for one boundary be-
tween materials 0 and 1 these reflection and transmission coefficients:

r0→1 =
u0 − u1
u0 + u1

, r1→0 =
u1 − u0
u0 + u1

(8)



t0→1 =
2u0

u0 + u1
, t1→0 =

2u1
u0 + u1

, (9)

where un =
√
λ2 − k2n as before. Let us consider a reflection coefficient of

two boundaries separated by a distance d. Initial electromagnetic wave can
either reflect back (first term in the following expression) or pass through
the first boundary. This part of the wave partly reflects back by the second
boundary and then either passes through the first one (the second term)
or reflects again towards the second boundary where the process repeats
with decreasing amplitude.

r2b = r0→1 + t0→1r1→2t1→0e−2du1
(
1 + q + q2 + ...

)
q = r1→0r1→2e−2du1

Summing the geometric progression and inserting from (8) and (9) we get

r2b =
r0→1 + r1→2e−2du1

1 + r0→1r1→2e−2du1
(10)

Now let us have a system of three boundaries separated into one simple
boundary and a two-boundaries subsystem. Since we are interested only in
the reflection, the subsystem behaves as a single boundary with reflection
coefficient described in (10) and we get the same result for r3b as above;
only with r2b instead of r1→2. Gradual adding of boundaries leads us to
a recursive formula for a multilayer

rj =
rj→j+1 + rj+1e−2dj+1uj+1

1 + rj→j+1rj+1e−2dj+1uj+1
,

where dj is a distance between the j-th and (j+ 1)-st boundary (j-th
layer). We use the low induction number approximation, so we have to
perform a Taylor expansion of rj around ωµ0σj � 1 for every j, where
σj is conductivity of the j-th layer:

rj =
iωµ0 (σj − σj+1)

4λ2
+ rj+1e−2λdj+1 (11)

To get the secondary magnetic field of vertical dipole we start from equa-
tion (3):

F (ρ, z) =
iωµ0m

4π

∫ ∞
0

(
e−u0z + reu0z

) λ
u0

J0(λρ) dλ



Hz =
1

iωµ0

(
∂2

∂z2
+ k20

)
F

=
m

4π

∫ ∞
0

(
e−u0z + reu0z

) λ3
µ0

J0(λρ) dλ

Receiver is on the ground, so z = 0, we use the low induction number
approximation and we are interested only in the imaginary part of the
magnetic field, so we can omit the first term as a contribution to the real
part.

= (Hz) =
m

4π

∫ ∞
0

rλ2J0(λρ) dλ

We insert r from (11) which gives us an infinite progression of integrals;
we will consider the j-th term:

= (Hz)
j

= −m
4π

iωµ0 (σj+1 − σj)
4

∫ ∞
0

J0(λρ)e−λ2Dj dλ,

where Dj is a sum of layer thicknesses till the (j+1)-st boundary. Using
identity (4) we get

= (Hs)
j

= −m
4π

iωµ0 (σj+1 − σj)

4
√
ρ2 + 4D2

j

Inserting this into (7) we get a relation between apparent conductivity and
partial conductivities of individual layers:

σ =
∑
j

σj+1 − σj√
1 + 4

(
Dj

ρ

)2
For infinitesimally thin layers we can change to a continuous variable D,
which is a depth in the ground, and define the cumulative sensitivity:

RV(D, ρ) = − 1√
4
(
D
ρ

)2
+ 1

,

where ρ is the intercoil distance. From this we can derive the normalized
sensitivity (published by McNeill), whose shape has been illustrated by
graphs at the beginning of this brochure:

ΦV =
∂RV

∂
(
D
ρ

) =
4Dρ[

4
(
D
ρ

)2
+ 1

] 3
2



Maximum of this function is at D/ρ = 1/
√

8, which gives the highest
sensitivity in the depth of 0.35ρ.

Horizontal magnetic dipole

To obtain the apparent conductivity, we will proceed analogically to the
case of vertical configuration: earth is perpendicular to the z-axis, dipole
is now in the x-direction.

F 2DF
x (kx, ky, z) =

iωµ0m

2u0
e−u0z

~H = −(σ + iωε)~F +
1

iωµ0
∇(∇~F )

Hz obtained from ~FX = (Fx, 0, 0) and ~F = (0, 0, F ) must be equal.

H(x)
z =

1

iωµ0

∂2Fx
∂x∂z

=
1

4π

∫ ∞
−∞

∫ ∞
−∞
−ikx

m

2
e−u0zei(kxx+kyy) dkx dky

H(z)
z =

1

iωµ0

(
∂2

z2
+ k20

)
F 2DF =

1

iωµ0

(
k2x + k2y

)
F 2DF

F 2DF = − iωµ0m

2

ikx
k2x + k2y

(
e−u0z + reu0z

)
We perform inverse 2D Fourier transform

F (x, y, z) = − iωµ0m

8π2

∫ ∞
−∞

∫ ∞
−∞

(
e−u0z+reu0z

) ikx
k2x + k2y

ei(kxx+kyy) dkxdky

= − iωµ0m

8π2

∫ ∞
−∞

∫ ∞
−∞

∂

∂x

(
e−u0z + reu0z

) 1

λ2
ei(kxx+kyy) dkxdky

and convert to Hankel transform

F (x, y, z) = − iωµ0m

4π

∂

∂x

∫ ∞
0

(
e−u0z + reu0z

) 1

λ
J0(λρ) dλ (12)

Approximations: k0 = 0, u0 = λ, r = λ−u
λ+u ; z = 0.

Hx =
1

iωµ0

∂2F

∂x∂z
=
m

4π

∂2

∂x2

∫ ∞
0

(
e−u0z−reu0z

)
J0(λρ) dλ

=
m

4π

∂2

∂x2

∫ ∞
0

2u

λ+ u
J0(λρ) dλ



Identities:
∂

∂x
=
x

ρ

∂

∂ρ
,
∂J0(λρ)

∂ρ
= −λJ1(λρ)

Hx =
m

4π

∂

∂x

(
x

ρ
η

)
η = − 2

k2

∫ ∞
0

(λ− u)λuJ1(λρ) dλ

= − 2

k2

∫ ∞
0

λ2uJ1(λρ) dλ+
2

k2

∫ ∞
0

λ3J1(λρ) dλ− 2

∫ ∞
0

λJ1(λρ) dλ

Identity: ∫ ∞
0

λ

u
e−uzJ0(λρ) dλ =

e−ikr

r
, r =

√
ρ2 + z2

∂2

∂z2

[
∂

∂ρ

∫ ∞
0

λ

u
e−uzJ0(λρ) dλ

]
z=0

=
∂2

∂z2

[
∂

∂ρ

e−ikr

r

]
z=0∫ ∞

0

λ2uJ1(λρ) dλ =
1

ρ4
(
k2ρ2 − 3ikρ− 3

)
e−ikρ

Identity: ∫ ∞
0

e−λzJ0(λρ) dλ =
1

r[
∂

∂ρ

∫ ∞
0

e−λzJ0(λρ) dλ

]
z=0

=

[
∂

∂ρ

1

r

]
z=0∫ ∞

0

λJ1(λρ) dλ =
1

ρ2

Identity: [
∂2

∂z2
∂

∂ρ

∫ ∞
0

e−λzJ0(λρ) dλ

]
z=0

=

[
∂2

∂z2
∂

∂ρ

1

r

]
z=0∫ ∞

0

λ3J1(λρ) dλ = − 3

ρ4

η = − 2

k2ρ4
[
3 + k2ρ2 −

(
3 + 3ikρ− k2ρ2

)
e−ikρ

]
∂η

∂ρ
= − 2

k2ρ5
[
−2k2ρ2 − 12 +

(
−ik3ρ3 − 5k2ρ2 + 12ikρ+ 12

)
e−ikρ

]
Hx =

m

4πρ3

[
y2η + x2ρ

∂η

∂ρ

]



Coils are coplanar, so we put x = 0 and y = ρ (the intercoil distance).

Hs
x = − m

2πk2ρ5
[
3 + k2ρ2 −

(
3 + 3ikρ− k2ρ2

)
e−ikρ

]
Hp
x = − m

4πρ3

Hs

Hp
=

2

k2ρ2
[
3 + k2ρ2 −

(
3 + 3ikρ− k2ρ2

)
e−ikρ

]
Substituing γ = ik to get McNeill’s formula

Hs

Hp
=

2

γ2ρ2
[
−3 + γ2ρ2 +

(
3 + 3γρ+ γ2ρ2

)
e−γρ

]
(13)

Using the induction number: B = γρ√
2i

Hs

Hp
=
−i

B2

{
−3 + 2iB2 +

[
(3 + 3B) + i

(
3B + 2B2

)]
e−B (cosB − i sinB)

}
Quadrature:(

Hs

Hp

)
q

= − i

B2

[
−3 + (3 + 3B) e−B cosB +

(
3B + 2B2

)
e−B sinB

]
Taylor expansion for small B:(

Hs

Hp

)
q

= i

[
B2

2
− 4B3

15
+

4B5

105
− B6

72
+O(B7)

]
For very small B: (

Hs

Hp

)H

q

≈ iB2

2
=
γ2ρ2

4
=

iσµ0ωρ
2

4

This formula is typical for the linear part of the calibration curve of elec-
tromagnetic conductivity meters. With increasing induction number the
second term of the expansion gives a distinct negative contribution, which
results in the decreasing part of the calibration curve and ambiguous re-
sults of measurements. It is worth noticing that the negative contribution
is twice smaller than in the vertical configuration, which widens the range
of the linear part of the calibration curve for this configuration.



Now we can express the apparent conductivity σH:

σH =
4

iµ0ωρ2

(
Hs

Hp

)H

q

(14)

Now we look at the real part of (13):

<
(
Hs

Hp

)
=

1

B2

[
2B2 − (3 + 3B)e−B sinB +

(
3B + 2B2

)
e−B cosB

]
Taylor expansion for small B:

<
(
Hs

Hp

)
= 1 +

4B3

15
− B4

6
+

4B5

105
+O(B6)

For very small B:

<
(
Hs

Hp

)H

= 1 +
2
√

2

15
(ωµ0σ)

3
2 ρ3

From this formula we can see that after subtraction of the primary field
(number one – the first term) the most significant term contains a contribu-
tion of ground conductivity. This is undesirable effect for using in-phase to
measure magnetic susceptibility. The influence of the third negative term
of the Taylor expansion for bigger induction number is again smaller for
horizontal configuration.

Horizontal dipole – depth-depending sensitivity

We will again proceed analogically to the vertical case, starting from equa-
tion (12):

F (x, y, z) = − iωµ0m

4π

∂

∂x

∫ ∞
0

(
e−u0z + reu0z

) 1

λ
J0(λρ) dλ

We omit the first term, as it is only a contribution to the real part of the
magnetic field.

= (Hx) =
1

iωµ0

∂2F

∂x∂z

=
m

4πρ

∫ ∞
0

reu0zλJ1(λρ) dλ− m

4πρ

∫ ∞
0

reu0zµ0
x2

ρ2
λJ2(λρ) dλ



For this configuration: z = 0, x = 0.

= (Hx) =
m

4πρ

∫ ∞
0

rλJ1(λρ) dλ

We insert the recursive formula for reflection coefficient from a multi-
layer (11). = (Hx) becomes an infinite progression with j-th term:

= (Hx)
j

= − m

4πρ

iωµ0 (σj+1 − σj)
4

∫ ∞
0

e−2Djλ

λ
J1(λρ) dλ

Identity: ∫ ∞
0

e−aλ

λ
J1(λρ) dλ =

√
ρ2 + a2 − a

ρ

= (Hx)
j

= − m

4πρ

iωµ0 (σj+1 − σj)
4

√
ρ2 + (2Dj)

2 − 2Dj

ρ
,

where σj is conductivity of the j-th layer. Inserting this into (14) we
get a relation between apparent conductivity and partial conductivities of
individual layers:

σ =
∑
j

(σj+1 − σj)

√
ρ2 + (2Dj)

2 − 2Dj

ρ

For infinitesimally thin layers we can change to a continuous variable D,
which is a depth in the ground, and define cumulative sensitivity:

RH(D, ρ) = −

√
ρ2 + (2D)

2 − 2D

ρ
= 2

D

ρ
−

√
1 + 4

(
D

ρ

)2

,

where ρ is the intercoil distance. From this we can derive the normalized
sensitivity (published by McNeill), whose shape has been illustrated in
graphs at the beginning of this brochure:

ΦH =
∂RH

∂
(
D
ρ

) = 2−
4Dρ√

4
(
D
ρ

)2
+ 1

Maximum of this function for D ≥ 0 is at D/ρ = 0, which gives the highest
sensitivity at the surface.


